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0.1. SOME MOTIVATION AND INTRODUCTION

Disclaimer

This is work in progress and will develop during the running semester!
In the likely case of typos or other errors please inform me, so that I can correct them.

0.1 Some Motivation and Introduction

The theory of metric spaces can be applied very broadly. Topology is a generalization of this
theory. Why would one generalize such a general theory even further?
This can be motivated by examples where the theory of metric spaces does not apply!

Pointwise Convergence: Let (fn)n∈N be a sequence of functions fn : [0, 1] → R and f :
[0, 1] → R a function. We say that fn converges to f pointwise if

∀x ∈ X : f(x) = lim
n→∞

fn(x) .

While uniform convergence can be understood by studying the supremum metric from
Example A.2 e), the pointwise convergence can not be described by a metric! (We will
see this fact later in the lecture!)

Weak Topologies: Similarly, there are situations in the study of infinite dimensional vector
spaces in which one would like to study certain “weak” convergence properties (loosely
comparable to pointwise convergence) which are not describable by metrics.

Uncountable Products: A very related situation: Sometimes one can realize a certain space
as a subspace of an uncountable product. Those products however can not be described
by a metric.

Compactifications: This is too abstract to be a motivating example, however there are
situation in which one wants to make a space, say the natural numbers N, compact.
We could do this by embedding the natural numbers as {1/n | n ∈ N} ⊆ [0, 1] and
taking the closure. Note however, that not every continuous function f : N → R
can be extended to a continuous function on this compactification. (Exercise: find
an example!) If you want to have a compactification to which you can extend all
continuous functions one has to give up a lot of other structural properties (you can
not get such nice things for free). Most importantly those compactifications are not
described by metrics.

Constructions in many algebraic areas: Sometimes it is useful to assign a certain space to
an algebraic object (see ALGEBRAIC GEOMETRY and in particular the ZARISKI TOPOL-
OGY1). Those spaces are often not described by a metric.

Saving Headspace: In many situations one does not need to think about the special prop-
erties of metrics (even if they describe the structure of the space). We have seen that
continuity, convergence and compactness are all completely determined by open sets
alone. Many other properties also depend only on topological information, i. e. open
sets. Sometimes it makes your work easier, the theory tidier and your proofs cleaner if
you abstract away from unnessecary details.

Independently on whether you find the above remarks motivating or not, the history of
mathematics has shown that topology is a very fruitful field with applications both in other
fields of mathematics as well as other sciences.
A fitting intuition for topological reasoning is to do geometry but to ignore lengths and an-
gles. This is perfectly exemplified by EULER’S solution of the Problem of the “Seven Bridges

1https://en.wikipedia.org/wiki/Zariski_topology
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of Königsberg” (https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg)
which could be seen as groundwork for both topology and graph theory.
So by copying this characterization as a definition we unders continuity, convergence and
compactness in this topological space.
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Chapter 1

Basic Notions

1.1 Viewpoints to Study Topological Spaces*

There are various different (equivalent) ways how one can capture the structure of a topo-
logical space. While the definition via open sets is nowadays the standard one (and the one
we will be mostly working with), it is very illuminating to see from different viewpoints how
the structure of a topological space emerges.
NOTE: it can be very confusing to study many equivalent definitions of a concept one has
only heard the definition of. So do not pressure yourself to understand this section on the
first read. In fact you may skip it until you feel like you have gotten a grasp on the standard
definition of topological spaces. You can skip this chapter safely as any important definition
made here will be repeated in the main part of the lecture notes. This chapter should serve
as something to come back to over and over again. Especially with each new concept one
can come back and ponder whether this concept could be also formulated from the other
viewpoints. We will do this regularly.

1.1.1 The Standard Definition

Definition 1.1 (Topology). A system of subsets T ⊆ P (X) is called a topology (on X) if

O1) ∅ ∈ T and X ∈ T .

O2) If U, V ∈ T , then U ∩ V ∈ T . (Closure under finite intersection)

O3) For any subset O ⊆ T we have
⋃
O ∈ T . (Closure under arbitrary union)

The pair (X, T ) is called a topological space.

The key intuition is to think of the elements of a topology T as open. So the step from metric
spaces to topological spaces is done by forgetting about the reason why certain sets are
open. (Exercise: Prove that the system of open sets of a metric space is indeed a topology!
(Cf. Proposition A.11)) We get a mapping from the class of metric spaces to the class of
topological spaces

(X, d) 7−→ (X, {O ∈ P (X) | O is open with respect to the metric d})

assigning each metric space its induced topological space.
Using Lemma A.18 and Corollary A.22.1 we can define notions of convergence and conti-
nuity for topological spaces (in a way that the convergence and continuity in a metric space
and its induced metric space coincide).

1.1.2 Alternative Viewpoints

Let T be a topology on X.
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CHAPTER 1. BASIC NOTIONS

1.1.2.1 Closed Sets

Definition 1.2 (Closed Sets). We say that A is closed in (X, T ) if Ac ∈ T , i.e. if Ac is open.

By taking the complements we can go over to a system of closed sets, i.e.

Tcl := {U c | U ∈ T }

Lemma 1.3 (Structure of Closed Sets). Tcl satisfies

C1) ∅ ∈ Tcl and X ∈ Tcl.

C2) If A,F ∈ Tcl, then A ∪ F ∈ Tcl.

C3) For any subset K ⊆ Tcl we have
⋂
K ∈ Tcl.

Proof. Follows from De Morgan (Exercise!).

Note that if T ′
cl ⊆ P (X) satisfies the properties stated in Lemma 1.3, then T ′ := {F c | F ∈ T ′

cl}
is a topology. Therefore, we conclude:

Proposition 1.4 (Topological Spaces via Closed Sets). We can equivalently define topological
spaces via systems of closed sets satisfying Lemma 1.3. p

(Exercise: What exactly does “equivalently” mean in the above Proposition 1.4?)

1.1.2.2 Kuratowski Closure Axioms

Recall the definition and basic properties of the closure in metric spaces laid out in Defini-
tion A.14 and Lemma A.16. For general topological spaces (X, T ) we can define a closure
operator clT associated to the topology T .

Definition 1.5. For A ⊆ X we define

clT (A) :=
⋂

{F ∈ P (X) | F c ∈ T (i. e. F is closed) and F ⊇ A} .

Often we omit the subscript T if the choice of topology is clear. We then call cl(A) the
closure of A. Another common notation for the closure of A is A.

Trying to capture what a closure operator intuitively should satisfy we may define

Definition 1.6 (Kuratowski Closure Operator). A map c : P (X) → P (X) is called a Kura-
towski closure operator if

K1) c(∅) = ∅.

K2) A ⊆ c(A) for all A ∈ P (X). (Extensivity)

K3) c(c(A)) = c(A) for all A ∈ P (X). (Idempotence)

K4) c(A ∪B) = c(A) ∪ c(B) for all A,B ∈ P (X). (Compatibility with unions)

Now if you consider a set to be closed if and only if it is its closure on can assign a system of
closed sets to a closure operator. This gives us the following alternative characterization of
topological spaces:

Proposition 1.7 (Topological Spaces via Kuratowski Closure Operators). clT is a Kuratowski
closure operator for any topology T on X. Conversely, for any Kuratowski closure operator c
the family

Tc := {A ∈ P (X) | c(Ac) = Ac}
is a topology on X and the assignment

T 7−→ clT and c 7−→ Tc

are mutually inverse.
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1.1. VIEWPOINTS TO STUDY TOPOLOGICAL SPACES*

Proof. Topologies induce Kuratowski Closure Operators: Let T be a topology on X.

K1) Then clearly ∅c = X ∈ T so ∅ is closed. Therefore,

clT (∅) =
⋂

{F ∈ P (X) | F c ∈ T and F ⊇ ∅}︸ ︷︷ ︸
∋∅

= ∅ .

K2) Now let A ⊆ X be arbitrary. Then for any

C ∈ {F ∈ P (X) | F c ∈ T and F ⊇ A}

we have by definition that A ⊆ C. Thus

A ⊆
⋂

{F ∈ P (X) | F c ∈ T and F ⊇ A} = clT (A) .

This proves the extensivity.

K3) As arbitray unions of open sets are open, De Morgan implies that arbitrary in-
tersections of closed sets are closed, so clT (A) is closed itself. (Thats why the
definiton of “closure” is useful in the first places) So clT (A) is a closed superset
of A and thus

clT (clT (A)) =
⋂

{F ∈ P (X) | F c ∈ T and F ⊇ clT (A)}︸ ︷︷ ︸
∋clT (A)

⊆ clT (A) .

Together with the extensivity this implies the idempotence.

K4) Now let A,B ∈ P (X) be arbitrary. Observe that clT is clearly monotone, e. g.

clT (A ∪B) ⊇ clT (A) and clT (A ∪B) ⊆ clT (B) .

So we have clT (A ∪ B) ⊇ clT (A) ∪ clT (B). Conversely, observe that clT (A) ∪
clT (B) is a closed superset of A ∪B. Thus, clT (A ∪B) ⊆ clT (A) ∪ clT (B).

Kuratowski Closure Operators induce Topologies: Now let c be a Kuratowski closure op-
erator. We show that

Kc := {F ∈ P (X) | F = c(F )}

satisfies Lemma 1.3. This immediatly implies, by Proposition 1.4 that

Tc := {A ∈ P (X) | Ac = c(Ac)}

is a topology on X.

C1) By K1) we see that ∅ ∈ Kc. By K2) we further see that X ∈ Kc.

C2) Now let A,F ∈ Kc. Then

A ∪ F = c(A) ∪ c(F ) = c(A ∪ F ) .

So A ∪ F ∈ Kc. This immediatly also implies monotonicity, i. e. c(A) ⊆ c(B)
whenever A ⊆ B.

C3) Now let K ⊆ Kc be arbitrary. Note that
⋂

K ⊆ F for any F ∈ K. Thus c(
⋂
K) ⊆

c(F ) for any F ∈ K. Therefore,

c
(⋂

K
)
⊆
⋂

F∈K

c(F ) =
⋂

F∈K

F =
⋂

K

By extensivity of c we have c (
⋂

K) =
⋂
K and thus

⋂
K ∈ Kc.

The mutual inverseness of the operators is an exercise!

So we could equivalently define topological spaces via Kuratowski closure operators.
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CHAPTER 1. BASIC NOTIONS

1.1.2.3 Hausdorff Neighbourhood Axioms

Again let (X, T ) be a topological space. Recall the definition of a neighbourhood in metric
spaces (Definition A.13). We define

Definition 1.8 (Neighbourhood Filter). Let x ∈ X and A ⊆ X. We call A a neighbourhood
of x if there is an set U ∈ T , i. e. an open set, such that x ∈ U ⊆ A.
By UT (x) we denote the system of all neighbourhoods of x and call UT (x) called the neigh-
bourhood filter of x.

Trying to capture abstractly what a (system of) neighbourhood should satisfy we might come
up with

Definition 1.9 (Hausdorff Neighbourhood Filter Axioms). A map

U : X −→ P (P (X)) , x 7−→ U(x)

is called a Hausdorff neighbourhood filter operator if

H1) x ∈ U for any U ∈ U(x) (Neighbourhoods contain the point of which they are neighbour-
hoods) and X ∈ U(x) (The whole space is always a neighbourhood).

H2) For any two U, V ∈ U(x) we have U ∩V ∈ U(x). (The intersection of two neighbourhoods
is again a neighbourhood)

H3) If V ⊇ U for some U ∈ U(x), then V ∈ U(x). (Supersets of neighbourhoods are neigh-
bourhoods themselves)

H4) For any U ∈ U(x) there is V ∈ U(x) such that V ⊆ U and for any y ∈ U we have
U ∈ U(y). (Any neighbourhood contains an open neighbourhood)

It turns out that for any topology the system of neighbourhood filters is a Hausdorff neigh-
bourhood filter operator. Conversely, every Hausdorff neighbourhood filter operator induces
a topology.

Proposition 1.10 (Topological Spaces via Hausdorff Neighbourhood Filters). UT is a Haus-
dorff neighbourhood filter operator for any topology T on X. Conversely, for any Hausdorff
neighbourhood filter operator U the family

TU := {U ∈ P (X) | ∀x ∈ U : U ∈ U(x)}

is a topology on X and the assignment

T 7−→ UT and U 7−→ TU

are mutually inverse.

Proof. Topologies induce Hausdorff Neighbourhood Filter Operators: Let T be a topol-
ogy. We show that UT : X → P (P (X)) is a Hausdorff neighbourhood filter operator.
Let x ∈ X be arbitrary.

H1) So let U ∈ UT (x). Then there is an open O ⊆ U with x ∈ 0. So x ∈ U . As X is
open itself it is a neigbhourhood of all its points and thus X ∈ UT (x).

H2) Let U, V ∈ UT (x). Then there are open OU ⊆ U and OV ⊆ V with x ∈ OU and
x ∈ OV . Then O := OU∩OV is open an O ⊆ U∩V with x ∈ O. So U∩V ∈ UT (x).

H3) Let U ∈ UT (x) and V ⊇ U . There is an open O ⊆ U with x ∈ O. Clearly O ⊆ V
and so V ∈ UT (x).

H4) Let U ∈ UT (x). Then there is an open O ⊆ U with x ∈ O. Now let y ∈ O.
Then, as O is open, there is an open subset of O, namely O itself, containing y.
So O ∈ UT (y).
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1.1. VIEWPOINTS TO STUDY TOPOLOGICAL SPACES*

Hausdorff Neighbourhood Filter Operators induce Topologies: Let U be an Hausdorff neigh-
bourhood filter operator. The idea is to call a set open if it is a “neighbourhood” of
each of its elements. So we define

TU := {U ∈ P (X) | ∀x ∈ U : U ∈ U(x)}

and have to prove, that its a topology.

O1) As the empty set has no elements the condition for ∅ ∈ TU is vacuoulsy satisfied.
Conversely as X is always a neighbourhood, by H1) we also have that X ∈ TU.

O2) Now, let U, V ∈ FU. For x ∈ U ∩ V we have that x ∈ U and x ∈ V and therefore
U ∈ U(x) and V ∈ U(x). Thus U ∩ V ∈ U(x), by H2), and therefore U ∩ V ∈ FU.

O3) Finally, let O ⊆ TU be a family of open sets. Let U :=
⋃

O. For x ∈ U there is
O ∈ O with x ∈ O ∈ TU. Then, by definition of TU, we have O ∈ U(x). By H3)
we have

⋃
O ∈ U(x). As x ∈ U was arbititrary, we have

⋃
C ∈ TU.

So TU is a topology.
Now the careful reader might wonder, what is the use of H4)? We have not yet used it (ex-
cept shown that it is satisfied by the neighbourhood filters induced by topologies). Systems
of neighbourhoods not satisfying H4) still induce topologies. So is H4) already implied by
the other axioms? Unlike wrongly claimed in a previous version of those lecture notes (and
a source I checked) the naive proof of this does not hold up to scrutiny. While a system of
“neighbourhoods” satisfying H1), H2) and H3) induces a topology which in turn induces a
system of “neighbourhoods” that satisfies H1), H2), H3) and H4), those systems of “neigh-
bourhoods” need not be the same. In fact they are the same if and only if the original one
satisfies H4) itself.
So H4) is the crucial ingredient in the proof that those assignments

T 7−→ UT and U 7−→ TU

are mutually inverse.

TUT = T : Let T be a topology. Then U ∈ TUT if and only if U is a neigbourhood of all of its
points. This is equivalent to U =

∫
(U) which is equivalent to U ∈ T .

UTU
= U: Let x ∈ X. Let U ∈ U(x). Then, by H4), there is V ∈ U(x) with V ⊆ U which
is a neighbourhood of all its points. Thus V ∈ TU. As x ∈ V ⊆ U we see that U is a
neighbourhood of x in the topology TU. Thus U ∈ UTU

(x).

Conversely, let U ∈ UTU
(x). Then there is V ⊆ U with V ∈ TU and x ∈ V . As V ∈ TU

we have that V ∈ U(y) for any y ∈ V . As x ∈ V , we have V ∈ U(x). As V ∈ U(x), H3)
implies U ∈ U(x).

A careful examination of the above proof shows that while not every system of “neighbour-
hoods” satisfiying H1), H2) and H3) satisfies H4) it can be extended into one (by going to
UTU

. This is the case as U(x) ⊆ UTU
(x) does not require H4).

So we can think about topologies by thinking about neighbourhoods. This offers a good
intuition.

1.1.2.4 Honorable Mentions

The following fall short of equivalently definining topologies (we will see over the course of
the lecture why this is the case and how to fix this), however they still offer valuable insights
into how one can understand topologies.
Again, let (X, T ) be a topological space. Recall Definition A.17 and Lemma A.18. This
allows us to generalize convergence from metric spaces to arbitrary topological spaces.
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CHAPTER 1. BASIC NOTIONS

Definition 1.11 (Convergence). Let (xn)n∈N a sequence and x ∈ X. We say that x is a limit
of (xn)n∈N or, equivalently, that (xn)n∈N converges to x if

∀U ∈ U(x) : ∃N ∈ N : ∀n > N : xn ∈ U .

We will write xn
n→∞−−−−→ x.

Remark 1.12. Note that I intentionally spoke of “a limit”. We will soon see that in general
topological spaces the limit of a sequence needs not be unique.

One might have the intuition, that convergence of sequences somehow determines the struc-
ture of the topology. This intuition is leading in the right direction. However, we will see,
that convergence of sequences alone is not sufficient, as some topological spaces are too
complicated. We will later develop the tools to fix this intuition.
Similarly, one could try to determine the topology on a space by considering continuous
functions.

Definition 1.13 (Continuity). Let (X, TX) and (Y, TY ) be two topological spaces and x ∈ X.
A function f : X → Y is called continuous in x if

∀V ∈ UTY
(f(x)) : f−1(V ) ∈ UTX

(x) ,

i. e. if preimages of neighbourhoods are neighbourhoods.
f is called continuous if f is continuous in x for all x ∈ X.

However, simply considering the set of continuous functions {f : X → R | f is continuous }
does not determine the topology on X in general. The reason here is again, that the topo-
logical space might be complicated in a manner that can not be captured in R.
A similarly not completely working intuition is to consider the continuous functions.

1.2 Definition and First Examples

Definition 1.14 (Topology). A system of subsets T ⊆ P (X) is called a topology (on X) if

O1) ∅ ∈ T and X ∈ T .

O2) If U, V ∈ T , then U ∩ V ∈ T . (Closure under finite intersection)

O3) For any subset O ⊆ T we have
⋃
O ∈ T . (Closure under arbitrary union)

The pair (X, T ) is called a topological space.

Definition 1.15 (Open and Closed Sets). By definition we call all sets U ∈ T open. If a
F c ∈ T , then we call F closed.

Remark 1.16. As with metric spaces: There are sets which are neither open nor closed. Sets
which are only one but not the other. And sets which are both open and closed.

Example 1.17. Let X be a set.

i) Every metric induces a topology. Let d be a metric on X, then

Td := {O ∈ P (X) | O is open with respect to d} .

With all definitions we will make it is an useful exercise to check that, if the notion is
also defined for metric spaces both definitions coincide whether applied to the metric
or to the induced topology!

ii) The whole power set P (X) is a topology. This is an important example and gets the
name discrete topology. (Exercise: By which metric is this topology induced?)

10



1.3. CONVERGENCE

iii) On the other end of the spectrum we have the indiscrete or trivial topology given by
{∅, X}. It is not induced by a metric if X has at least two elements. (Exercise: Why?)

iv) The co-finite topology is given by

Tcf := {A ∈ P (X) | Ac is finite } ∪ {∅} .

Exercise: Show that this is a topology. Exercise: Is it induced by a metric?

v) The co-countable topology is given by

Tcc := {A ∈ P (X) | Ac is countable } ∪ {∅} .

Exercise: Show that this is a topology. Exercise: Is it induced by a metric?

We can now extend the definitions we know from metric spaces to all topological spaces.

Definition 1.18. Let (X, T ) be a topological space Let A ⊆ X and a ∈ A.

• We call A closed if Ac ∈ T , i. e. if Ac is open.

• We call A a neighbourhood of a if there is O ∈ T with a ∈ O and O ⊆ A.

• The interior of A is given by

int(A) := {x ∈ X | A is neighbourhood ofx} =
⋃

{O ∈ T | O ⊆ A} .

• The closure of A is given by

cl(A) := {x ∈ X | Ac is not a neighbourhood ofx}

=
⋂

{F ∈ P (X) | F c ∈ T and A ⊆ F}

• The boundary of A is given by

∂A := cl(A) \ int(A) .

• A is called dense if cl(A) = X and nowhere dense if int(cl(A)) = ∅.

(Exercise: Prove the equalities claimed in the definition of the closure and interior and state
and prove an analogue of Lemma A.16.)

1.3 Convergence

Let (X, T ) be a topological space.

Definition 1.19 (Convergence). Let A ⊆ X and (xn)n∈N ∈ XN be a sequence and x ∈ X.

• We call x a accumulation point of the subset A if V ∩A \ {x} ≠ ∅ for any V ∈ U(x).

• We call x an cluster point of the sequence (xn)n∈N if for any V ∈ U(x) and any N ∈ N
there is n > N such that xn ∈ V .

• We say that the sequence (xn)n∈N converges to x if for any V ∈ U(x) there is N ∈ N
such that for all n > N we have xn ∈ V .

Exercise:

a) Find a sequence (xn)n∈N that converges to x but x is no accumulation point of {xn | n ∈ N}.

11



CHAPTER 1. BASIC NOTIONS

b) Find a sequence (xn)n∈N such that x is the only cluster point of (xn)n∈N but (xn)n∈N does
not converge to x.

c) Show that
cl(A) = A ∪ {x ∈ X | x is accumulation point of A} .

d) Find (a topological space (X, T ) and) a sequence (xn)n∈N and a point x ∈ X such that x
is an accumulation point of {xn | n ∈ N} but no cluster point of (xn)n∈N.

e) Describe the convergence with respect to the discrete topology.

f) Describe the convergence with respect to the indiscrete topology.

g) Describe the convergence with respect to the co-finite topology.

h) Describe the convergence with respect to the co-countable topology.
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Appendix A

Metric Spaces

For the union of sets there are two closely related notions. If (Ai)i∈I is a family of sets over
some index set I, then ⋃

i∈I

Ai = {x | ∃i ∈ I : x ∈ Ai} .

Similarly if A is a set of sets then⋃
A = {x | ∃A ∈ A : x ∈ A} .

Analogous notation will be used for intersections.

A.1 Definition and Examples

Let X be any set.

Definition A.1 (Metric Space). A metric (or distance function) on X is a map

d : X ×X −→ [0,∞), (x, y) 7−→ d(x, y)

which is positive definite, i. e.

d(x, y) = 0 ⇐⇒ x = y ,

symmetric, i. e.
d(x, y) = d(y, x)

and satisfies the triangle inequality, i. e.

d(x, z) ⩽ d(x, y) + d(y, z)

for all x, y, z ∈ X. If d is a metric on X one calls the pair (X, d) a metric space.

One very important notation (which varies between textbooks) is that of an “ε-ball”. For any
x ∈ X we define

Bε,d(x) := {y ∈ X | d(x, y) < ε}

and call it the open ε-ball around x. If the choice of metric is clear we will simply write
Bε(x).

Example A.2. a) The arguably most intuitive example is that of the real number line equipped
with d(x, y) = |x− y|. Then Bε(x) = (x− ε, x+ ε).
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APPENDIX A. METRIC SPACES

b) Similarly, the usual norm on Rn yields a metric on those spaces. To be precise, we define

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2 .

While the positive definiteness and the symmetry of d are straightforward, the proof
of the triangle inequality requires some work. It follows from the CAUCHY-SCHWARZ

INEQUALITY, which states that

⟨v, w⟩ =
n∑

i=1

viwi ⩽

√√√√ n∑
i=1

v2i ·

√√√√ n∑
i=1

w2
i = ∥v∥ · ∥w∥ . (A.1)

One can calculate that

d(x, z)2 =

n∑
i=1

(zi − xi)
2 =

n∑
i=1

((zi − yi) + (yi − xi))
2

=

n∑
i=1

(zi − yi)
2 + 2

n∑
i=1

(zi − yi)(yi − xi) +

n∑
i=1

(yi − xi)
2

(A.1)

≤
n∑

i=1

(zi − yi)
2 + 2

√√√√ n∑
i=1

(ziyi)2 ·

√√√√ n∑
i=1

(yi − xi)2 +

n∑
i=1

(yi − xi)
2

=

√√√√ n∑
i=1

(zi − yi)2 +

√√√√ n∑
i=1

(yi − xi)2

2

= (d(z, y) + d(y, x))
2
.

The “open ball” Bε(x) is now exactly an open ball of radius ε around x.

c) The above example immediatly generalizes to all normed vector spaces. Assume that ∥·∥
is a norm on a vector space V . Then

d : V × V −→ [0,∞), (v, w) 7−→ ∥v − w∥

is a metric on V . Here the properties of the metric immediatly follow from the properties
of a norm (in fact, the homogeneity is not needed). We call those metrics norm-induced.

d) On Rn one can define a multitude of metrics that are all “similar” in some sense (what
are the mathematical consequences of this similarity?). For example, both

dsup : Rn × Rn −→ [0,∞), (v, w) 7−→ n
max
i=1

|vi − wi|

and

d1 : Rn × Rn −→ [0,∞), (v, w) 7−→
n∑

i=1

|vi − wi|

are metrics on Rn (prove this as an exercise!).

Interestingly, the “open balls” look differently under those metrics. In fact, it holds that

B1,dsup
(0) = (0, 1)n

and B1,d1 is the rotatated and shrunken hypercube {±ek | k ∈ {1, . . . , n}} for the stan-
dard basis {e1, . . . , en} with ekn = δk,n. (Exercise: It is a nice exercise to draw those
“open balls” and understand their structure!)

14
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e) Let X be any set and (Y, dY ) a metric space. The most important case will be Y = R
equipped with the euclidean metric. Consider the bounded functions

Fb(X,Y ) :=

{
f : X → Y

∣∣∣∣ sup
x∈X

dY (f(x), f(x0)) < ∞
}

and observe that the above definition does not depend on the choice of x0 ∈ X (Exercise:
prove this from the triangle inequality!). We then use the metric dY on Y in order to
define the supremum metric dsup on Fb(X,Y ), given by

dsup : Fb(X,Y )×Fb(X,Y ) → [0,∞), (f, g) 7−→ sup
x∈X

dY (f(x), g(x)) .

(Exercise: It is a good exercise to check that dsup is indeed a metric and to understand
whats the role of the restriction to bounded functions!).

f) The arguably simplest metric that one can define on any set X is the discrete metric. We
simply define

d : X ×X −→ [0,∞), (x, y) 7−→

{
1 x ̸= y

0 x = y
.

This metric simply says that any point has distance one to any other point.

The triangle inequality can be equivalently written as the reverse triangle inequality.

Lemma A.3. A symmetric map d : X ×X → [0,∞) satisfies the triangle inequality if and only
if

|d(z, x)− d(x, y)| ⩽ d(z, y)

for any x, y, z ∈ X.

Proof. Let x, y, z ∈ X. The reverse riangle inequality immediatly implies

d(z, x)− d(x, y) ⩽ d(z, y) .

Adding d(x, y) on both sides and using symmetry yields the triangle inequality.
Conversely, we can conclude from the triangle inequality that d(x, y) ⩽ d(x, z) + d(y, z)
and therefore −d(x, z) + d(x, y) ⩽ d(x, y). Similarly, d(x, z) ⩽ d(x, y) + d(y, z) and thus
d(x, z)− d(y, z) ⩽ d(x, y). Together this yields the reverse triangle inequality.

A.2 Constructions of Metrics

With the supremum metric on the space of bounded functions we have already seen an
example of how one can take a metric on one set and have it induce a metric on the other
set. We will now see several more such constructions.

Definition A.4 (Subspace of a Metric Space). Let A ⊆ X be a subset of a metric space
(X, d). Obviously we can define

d|A×A : A×A −→ [0,∞), (a, a′) 7−→ d(a, a′)

by simply restricting. We will call (A, d|A×A) a subspace of (X, d) and often simply write
(A, d).

Remark A.5 (Finite Product of Metric Spaces). Let (X1, d1), . . . , (Xn, dn) be a finite family
of metric spaces. Then we can define a metric d on the product set

∏n
i=1 Xi by

d :

n∏
i=1

Xi ×
n∏

i=1

Xi −→ [0,∞), ((xi)
n
i=1, (yi)

n
i=1) 7−→

n∑
i=1

di(xi, yi) .

15
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Similary, we can define

d′ :

n∏
i=1

Xi ×
n∏

i=1

Xi −→ [0,∞), ((xi)
n
i=1, (yi)

n
i=1) 7−→

√√√√ n∑
i=1

(di(xi, yi))2 .

(Exercise: Note that there are several methods of defining a “product metric”. Contemplate
the reasons for this and, if you have already seen the construction of the product topology,
how topology avoids this non-uniqueness!)

Remark A.6 (Countably Infinite Product of Metric Spaces). Let (Xn, dn)n∈N be a countably
infinite family of metric spaces where supx,x′∈Xn

dn(x, x
′) < 1 for any n ∈ N. Then we can

define a metric d on the product set
∏

n∈N Xn by

dptw :
∏
n∈N

Xn ×
∏
n∈N

Xn −→ [0,∞), ((xn)n∈N, (yn)n∈N) 7−→ lim
N→∞

N∑
n=1

2−ndn(xn, yn) .

Note that while the cartesian product of sets treats every factor equally, this definition of a
product metric introduces an inhomogenity / assymmetry in the different coordinates. (Ex-
ercise: This metric induces pointwise convergence (on a countable set)). (Exercise: Convince
yourself that this is necessary and, once you know about product topology, contemplate how
topology circumvents this issue!)
Another metric on the countably infinite product is (assuming certain boundedness assupm-
tions (Exercise!)) given by

dsup :
∏
n∈N

Xn ×
∏
n∈N

Xn −→ [0,∞), ((xn)n∈N, (yn)n∈N) 7−→ sup
n∈N

dn(xn, yn) .

This metric is a generalization of the supremum metric (Example A.2 (e)). This metric is
qualitatively distinct from the metric dptw.

Definition A.7 (Pullback of Metrics). Let f : X → Y be any map and dY a metric on Y . We
can use f to define a symmetric dX := f∗dY on X which satisfies the triangle inequality by

dX : X ×X −→ [0,∞), (x, x′) 7−→ dY (f(x), f(x
′)) .

If f is injective then dX is a metric.

Remark A.8. With more work and certain assumptions it is also possible to define a metric
on a quotient space.

A.3 Open and Closed Subsets of Metric Spaces

Let (X, d) be a metric space.

Definition A.9 (Open and Closed Sets in Metric Spaces). A subset U ⊆ X is called open if
for any x ∈ U there is ε > 0 such that Bε(x) ⊆ U . A subset F ⊆ X is called closed if F c is
open.

Remark A.10. Note that in the context of topology “open” and “closed” are not contradictory
terms. A set can very well be both open and closed. The trivial example is the empty set
which is open and closed in any metric space. Less trivial is any subset of a set equipped
with the discrete metric. (Exercise: Prove that any subset of a set equipped with the discrete
metric is open and closed!)
Similarly, there are subsets that are neither open nor closed. This is for example true for the
set [0, 1) in the metric space R with the euclidean metric.
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Proposition A.11. The empty set ∅ and the whole space X are open. Finite intersections of
open sets are open. Arbitrary unions of open sets are open.

Proof. This is a very good exercise!

Lemma A.12. The “open ball” Bε(x) is indeed open for any x ∈ X and ε > 0.

Proof. This is a consequence of the triangle inequality.
Let x ∈ X and ε > 0. We have to show that for any y ∈ Bε(x) there is a δ > 0 such that
Bδ(y) ⊆ Bε(x). Let a := d(x, y) < ε. Then δ := ε− a > 0 and for z ∈ Bδ(y) we have

d(z, x) ⩽ d(z, y) + d(y, z) < δ + a = ε .

The following is basically the theory of the topology of metric spaces. We will study topol-
ogy much more generally, however this setting offers great intuition for the more general
situation.

Definition A.13 (Neighbourhoods in Metric Spaces). Let A ⊆ X and x ∈ A. We say that A
is a neighbourhood of x if there is an open set U ⊆ A such that x ∈ U .
Let x ∈ X then by

U(x) := {A ⊆ X | A is neighbourhood of x}

define the neighbourhood filter of x. (The usage of the word filter will be explained later
in the lecture.)

The neighbourhood filter is the collection of all neighbourhoods of a point. Conversely, we
can also consider the set of all points for which a given set is a neighbourhood.

Definition A.14 (Interior, Closure and Boundary in Metric Spaces). The interior of a subset
A ⊆ X is given by

int(A) := {x ∈ X | A is neighbourhood of x} = {x ∈ X | A ∈ U(x)} .

Another common notation is int(A) = Ao.
The closure of A is given by

cl(A) := {x ∈ X | Ac is no neighbourhood of x} = {x ∈ X | Ac ̸∈ U(x)} .

(Exercise: Prove directly that cl(A) = int(Ac)c!) Another common notation is cl(A) = A.
The boundary of A is defined as ∂A := cl(A) \ int(A). (Open Exercise: Is the name fitting?)
The subset A is called dense if cl(A) = X. Furthermore, A is called nowhere dense if
int(cl(A)) = ∅.

Example A.15. a) In R with the euclidean metric the notions of open and closed coincide
with the one we know from Analysis 1.

b) Let A ⊆ R2 be defined as

A :=
{
(x, y) ∈ R2

∣∣ 0 ⩽ x < 1, 0 ⩽ y < 1
}
= [0, 1)× (0, 1] .

Then

int(A) = (0, 1)2

cl(A) = [0, 1]2

∂A = ({0, 1} × [0, 1]) ∪ ([0, 1]× {0, 1})

(Exercise: Check and draw this!)

c) The rational numbers are dense in R with the euclidean metric.
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d) Finite subsets are nowhere dense in R with the euclidean metric.

Lemma A.16. Let A ⊆ X. Then ...

a) ... the interior of A is open.

b) ... the closure of A is closed.

c) ...
int(A) =

⋃
{U ⊆ A | U is open } .

d) ...
cl(A) =

⋂
{F ⊇ A | F is closed } .

e) ... A is open if and only if int(A) = A.

f) ... A is closed if and only if cl(A) = A.

g) ... int(A)c = cl(Ac).

h) ... int(Ac) = cl(A)c.

i) ... ∂A = ∂(Ac).

(Exercise: Use c) to make sense out of “The interior is the biggest open subset”. Similarly, use
d) to make sense out of “The closure is the smallest closed superset”.

Proof. We only prove c) and d, as those imply the other results (Exercise!).
Let B :=

⋃
{U ⊆ A | U is open }. Then B is open and B ⊆ A. Therefore, any x ∈ B has

B as a neighbourhood which is contained in A. So B ⊆ int(A). Conversely, let x ∈ int(A).
Then there is a neighbourhood V of x which is contained in A. Furthermore, there is an
open set O ⊆ V with x ∈ O. So x ∈ O ⊆

⋃
{U ⊆ A | U is open } = B.

Now let C :=
⋂
{F ⊇ A | F is closed }. Then C is closed and C ⊇ A. Therefore, any x ∈ Cc

has Cc as a neighbourhood which is contained in Ac and so x /∈ cl(A). Thus, Cc ⊆ cl(A)c

which is equivalent to cl(A) ⊆ C. Conversely, let x ∈ cl(A)c. Then Ac is a neigbourhood of
x and therefore there is U ⊆ Ac open with x ∈ U . Then x /∈ U c. As U c is a closed superset
of A this implies x /∈ C. So cl(A)c ⊆ Cc which is equivalent to C ⊆ cl(A).
For the remaining exercises I will now give hints:

a) and b) can be proven by the fatcs that unions of open sets are open and intersections of
closed sets are closed.

e) and f) follows by a) and b) and by definition of closure and interior.

g) and h) is a consequence of the De Morgan laws.

i) follows by De Morgan and g) and h).

A.4 Convergence

Again let (X, d) be a metric space.

Definition A.17 (Convergence in Metric Spaces). Let (xn)n∈N ∈ XN be a sequence and
x ∈ X. We say that (xn)n∈N converges to x (or that x is a limit point of (xn)n∈N) if

∀ε > 0 : ∃N ∈ N : ∀n > N : d(xn, x) < ε .

In this case we write x = limn→∞ xn and xn
n→∞−−−−→ x.
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Let (xn)n∈N ∈ XN be a sequence and x ∈ X.
Convergence only depends on open sets! This is one of the major facts that the abstract theory
of topology builds upon.

Lemma A.18. Let (xn)n∈N ∈ XN be a sequence and x ∈ X. Then x = limn→∞ xn if and only
if for any neigbourhood U ∈ U(x) there is N ∈ N such that for all n > N we have xn ∈ U .

Proof. This is a very instrumental exercise.

Lemma A.19. Every sequence has at most one limit point.

Proof. Let (xn)n∈N ∈ XN be a sequence and x, y ∈ X. Assume that x and y are both limit
points of (xn)n∈N and x ̸= y. Then a := d(x, y) > 0. But there is Nx ∈ N such that for all
n > Nx we have d(xn, x) <

a
2 . Similarly, there is Ny ∈ N such that for all n > Ny we have

d(xn, y) <
a
2 . Now for n > max(Nx, Ny) we have d(x, y) ⩽ d(x, xn)+d(xn, y) < a = d(x, y).

A contradiction.

Lemma A.20. For any A ⊆ X we have

cl(A) =
{
x ∈ X

∣∣∣ ∃(xn)n∈N ∈ AN : x = lim
n→∞

xn

}
Proof. Let x ∈ cl(A) and let n ∈ N. As Ac is no neighbourhood of x we must have that
B 1

n
(x) ∩A ̸= ∅. So pick xn ∈ B 1

n
(x) ∩A. Then clearly A ∋ xn

n→∞−−−−→ x.
Conversely let x = limn→∞ xn for some (xn)n∈N ∈ AN. Let U be any neighbourhood of x
then there is N ∈ N such that for n > N we have xn ∈ U . As xn ∈ A we have A ∩U ̸= ∅. In
particular U ̸= Ac. So Ac is no neighbourhood of x and thus x ∈ cl(A).

(Exercise: Conclude that A is closed if and only if it contains all limits of all its converging
sequences!)

A.5 Continuity

Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y a map.

Definition A.21 (Continuity in Metric Spaces). For x ∈ X we say that f is continuous in x
if

∀ε > 0 : ∃δ > 0 : ∀x′ ∈ X : dX(x, x′) < δ =⇒ dY (f(x), f(x
′)) < ε .

We call f continuous if f is continuous in all x ∈ X.
If f is bijective and both f and f−1 are continuous, then f is called a homeomorphism.

Proposition A.22 (Equivalent Characterizations of Continuity). Let x ∈ X. The following
are equivalent:

(i) f is continuous in x.

(ii) For every ε > 0 there is a δ > 0 such that

f(Bδ(x)) ⊆ Bε(f(x)) .

(iii) Let U be a neighbourhood of f(x), then f−1(U) is a neighbourhood of x.

(iv) For every sequence (xn)n∈N ∈ XN with x = limn→∞ xn we have

f(x) = lim
n→∞

f(xn) .

In this case we call f sequentially continuous.
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Proof. We show
(i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (ii) .

(i) is equivalent to (ii): This is just a reformulation. (Exercise!)

(ii) implies (iii): Let U ⊆ Y be a neighbourhood of f(x). Then there is ε > 0 such that
Bε(f(x)) ⊆ U . Now by (ii), there is δ > 0 such that

f(Bδ(x)) ⊆ Bε(f(x)) ⊆ U .

Thus Bδ(x) ⊆ f−1(U) and so f−1(U) is a neighbourhood of x.

(iii) implies (iv): Let (xn)n∈N ∈ XN be a sequence with x = limn→∞ xn. Let U be a
neighbourhood of f(x). By (iii), f−1(U) is a neighbourhood of x. Thus, there is
N ∈ N such that for all n > N we have xn ∈ f−1(U). Thus f(xn) ∈ U for n > N . As
U was arbitrary this shows that f(x) = limn→∞ f(xn).

(iv) implies (ii): We proceed by contraposition. Assume that there is ε > 0 such that for
any δ > 0 we have

f(Bδ(x)) ̸⊆ Bε(f(x)) .

Then, for any n ∈ N there exists xn ∈ B 1
n
(x) such that f(xn) /∈ Bε(x). Thus x =

limn→∞ xn and f(x) ̸= limn→∞ f(xn). So f is not sequentially continuous.

Corollary A.22.1 (preimages of open sets are open). f is continuous if and only if for every
open set U ⊆ Y the preimage f−1(U) is open in X.

Proof. Exercise!

Again we see that the continuity of functions is completely determined by open sets! The
idea of topology is to abstract away the notion of a metric and just consider open sets (which
then are open by definition).

A.6 Compactness

We directly choose a definition that only considers open sets.

Definition A.23 (Compact Metric Spaces). A metric space (X, d) is called compact if for
any family of open sets U with

⋃
U = X there is a finite subfamily {U1, . . . , Un} ⊆ U such

that
⋃n

i=1 Ui = X. (Open covers have finite subcovers.)

THEOREM A.24 (Cantor Intersection Theorem for Metric Spaces). Let (X, d) be compact and
let A be a family of closed subsets such that for any finite subfamility A′ we have

⋂
A′ ̸= ∅

(finite intersection property). Then
⋂
A ̸= ∅. (If finite intersections of a family of closed

subsets are non-empty, then the intersection over the whole family is non-empty aswell!)

Proof. The proof is just a reversal of the definition of compactness. Assume that
⋂
A = ∅.

Let U := {Ac | A ∈ A}. Then U is a family of open sets and
⋃
U = (

⋂
A)

c
= ∅c = X by de

Morgan. So U is an open cover. Thus there is a finite {U1, . . . , Un} ⊆ U with
⋃n

i=1 Ui = X.
Now A ∋ Ai := U c

i and
⋂
Ai = (

⋃
Ui)

c
= Xc = ∅ by de Morgan. So there is a finite

subfamily A′ = {A1, . . . , An} with
⋂
A′ = ∅. A contradiction.

In metric spaces the following characterization holds:

Proposition A.25. (X, d) is compact if and only if every sequence has a converging subse-
quence. (We call such spaces sequentially compact.)
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Proof. Let (X, d) be compact and (xn)n∈N ∈ XN any sequence. Consider the tail TN :=
{xn | n > N}. Then cl(TN ) is closed and (Exercise!)

k⋂
i=1

cl(TNi
) = cl

(
k⋂

i=1

TNi

)
= cl

(
Tmaxk

i=1 Ni

)
̸= ∅

for any finite {N1, . . . , Nk} ⊆ N. So {cl(TN ) | N ∈ N} has the finite intersection property.
Therefore,

L :=
⋂
N∈N

cl(TN ) ̸= ∅ .

Exercise: Show that any x ∈ L is the limit of a subsequence of (xn)n∈N!
The converse direction is more sophisticated. In order to keep this appendix short (we will
see the generalized version in the lecture regarding net-compactness) we omit it.
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